Global computational algebraic topology approach for diffusion
نویسندگان
چکیده
One physical process involved in many computer vision problems is the heat diffusion process. Such Partial differential equations are continuous and have to be discretized by some techniques, mostly mathematical processes like finite differences or finite elements. The continuous domain is subdivided into sub-domains in which there is only one value. The diffusion equation comes from the energy conservation then it is valid on a whole domain. We use the global equation instead of discretize the PDE obtained by a limit process on this global equation. To encode these physical global values over pixels of different dimensions, we use a computational algebraic topology (CAT)-based image model. This model has been proposed by Ziou and Allili and used for the deformation of curves and optical flow. It introduces the image support as a decomposition in terms of points, edges, surfaces, volumes, etc. Images of any dimensions can then be handled. After decomposing the physical principles of the heat transfer into basic laws, we recall the CAT-based image model and use it to encode the basic laws. We then present experimental results for nonlinear graylevel diffusion for denoising, ensuring thin features preservation.
منابع مشابه
Computational Algebraic Topology-Based Video Restoration
This paper presents a scheme for video denoising by diffusion of gray levels, based on the Computational Algebraic Topology (CAT) image model. The diffusion approach is similar to the one used to denoise static images. Rather than using the heat transfer partial differential equation, discretizing it and solving it by a purely mathematical process, the CAT approach considers the global expressi...
متن کاملA Physics-based Model for Active Contours: a Computational Algebraic Topology Approach
We present a new method for the deformation of curve based upon a decomposition of the elasticity problem into basic physical laws. We encode the basic laws using computational algebraic topology. Each basic law uses exact global values and makes approximations only when they are needed. The deformations computed with our approach have a physical interpretation. Furthermore, our algorithm perfo...
متن کاملCategorically-algebraic topology and its applications
This paper introduces a new approach to topology, based on category theory and universal algebra, and called categorically-algebraic (catalg) topology. It incorporates the most important settings of lattice-valued topology, including poslat topology of S.~E.~Rodabaugh, $(L,M)$-fuzzy topology of T.~Kubiak and A.~v{S}ostak, and $M$-fuzzy topology on $L$-fuzzy sets of C.~Guido. Moreover, its respe...
متن کاملA Computational Algebraic Topology Approach for Optical Flow
This paper proposes an alternative to partial differential equations (PDEs) for the solution of the optical flow problem. The problem is modeled using the heat transfer process. Instead of using PDEs, we propose to use the global equation of heat conservation. We use a computational algebraic topology-based image model which allows us to encode some underlying physical laws by linking a global ...
متن کاملFunctorial semantics of topological theories
Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004